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ABSTRACT

An enhanced multiobjective formulation technique, capable of emphasizing specific objective
functions during the optimization process, has been demonstrated on a complex multidisciplinary
design application. The Kreisselmeier-Steinhauser (K-S) function approach, which has been used
successfully in a variety of multiobjective optimization problems, has been modified using weight
factors which enables the designer to emphasize specific design objectives during the optimization
process. The technique has been implemented in two distinctively different problems. The first is a
classical three bar truss problem and the second is a high-speed aircraft (a doubly swept wing-body
configuration) application in which the multiobjective optimization procedure simultaneously
minimizes the sonic boom and the drag-to-lift ratio (Cp/Cr) of the aircraft while maintaining the lift
coefficient within prescribed limits. The results are compared with those of an equally weighted K-S
multiobjective optimization. Results demonstrate the effectiveness of the enhanced multiobjective
optimization procedure.

Introduction

Design of modern day aircraft is a multidisciplinary process involving the integration of several
disciplines such as aerodynamics, structures, dynamics, and propulsion. In such a complex process,
optimization techniques are valuable tools that enable the designer to choose a design point for the
given aircraft configuration. These optimization techniques should be able to take into account the
different disciplines associated with the aircraft design simultaneously. This can be a difficult task
because desired performance criteria in the different disciplines involved in the design process often
lead to conflicting requirements on vehicle configurations. One such optimization technique is the
Kreisselmeier-Steinhauser (K-S) function approach [1] which has been well known in the
mathematical programming community for a long time. Detailed discussion on the origin of this
approach as well as the complex mathematical analysis leading up to the version of the technique used
in the present work is beyond the scope of this paper since the current emphasis has been on the
computational implementation of the technique for practical aerospace design applications. The K-S
technique is a multiobjective optimization technique that combines all the objective functions and the
constraints to form a single unconstrained composite function to be minimized. An appropriate
unconstrained solver is then used to locate the minimum of the composite function. Any application
where there are more than one design criteria to optimize is a candidate for this method. The K-S
technique has already been shown to be effective in various complex multiobjective applications such
as Tilt-Rotor design, High-Speed Civil Transport (HSCT) design, HSCT wing design, sonic boom
minimization in HSCT, etc. [2-4].

An inherent characteristic of the K-S method is that all the objective functions or design criteria
are equally weighted, which helps to eliminate problems associated with incorrect user input in setting
up the optimization problems. However, in a multidisciplinary application, it would be advantageous

to have a method where a designer could emphasize specific design criteria relative to the others. In



the present work, a technique has been formulated to allow a designer to have this capability while
using the K-S method. The approach has been to modify the K-S functions using weight factors
(unlike the usual way of equal weights on all the objective functions), thus enabling increased
emphasis on specific objectives during the optimization process. The modified K-S function
technique is referred to as Enhanced K-S technique in this paper. It must be reiterated here that the K-
S function formulation has been chosen due to its ability to address multiple design objectives
simultaneously in the design optimization process and the primary aim of the present work has been to
enhance the technique and demonstrate it. The primary focus thus is the computational
implementation and demonstration of the enhanced technique for practical design applications.

In the present work, the enhanced K-S multiobjective formulation technique has been applied to
both a classical three bar truss problem and a HSCT sonic boom minimization problem. The three bar
truss problem has been chosen to demonstrate the effectiveness of the method by comparing it to a
known optimization problem. The use of the technique on the HSCT problem shows the
effectiveness of the enhanced K-S method on a complex modern day aerospace application. The
HSCT problem has competing design criteria that must be optimized. One such case is the apparent
conflict between the design requirements for improved aerodynamic performance and better sonic
boom characteristics of the airframe. For example, minimum lift to drag ratio (Cp/CL ) requires a
slender forebody whereas minimum sonic boom designs usually have blunt forebodies. The
following sections briefly outline the enhanced K-S function technique that has been implemented in
the present work and the two problems used to demonstrate the procedure. More detailed information

about the problems and the K-S approach can be found in the cited references.

Multiobjective Optimization

A general multiobjective optimization problem is,

Minimize/Maximize F(®) t =1,2, .., NF (objective functions)

subject to g(P) <0 ]

t, 2, ..., NC (inequality constraints)
P <P, (side constraints)

where @ is the design variable vector, F,(®) is the vector of objective functions, g,(P) is the vector of

constraints, NF is the number of objective functions to be optimized, and NC is the number of
constraints imposed on the design optimization. The subscripts L and U denote lower and upper
bounds, respectively, on the design variable vector. This is the general format of all the optimization
problems addressed in the present work and the multiobjective method chosen to address this type of

problem here is the K-S function approach [1].



Kreisselmeier-Steinhauser (K-S) Function Technique

In the K-S function approach [1], the original objective functions are transformed into reduced
or normalized objective functions [2]. Depending on whether these functions are to be minimized or
maximized, they can be expressed as,
E(®)

1o

tAﬁi((I)) = =1.0-gmnax £0, i=1,..,NF (minimization)

F(®)

1o

tQi(q)) =1.0- —Zmax <0, i=1,..,NF (maximization)

where F; ~represents the value of the original objective function corresponding to the current

reference design variable vector for a given optimization cycle, and F; is the value of the original
objective function which is dependent on the design variable vector. F 0 is constant during a given
optimization cycle. gy is the largest value of the original constraint vector at the current reference
point and is held constant during each iteration (cycle). Since the reduced objective functions are

analogous to the original constraints, a new constraint vector f,(®), m=1,2, ..., M, where M =

NC + NF, is introduced. The first NC elements of f, are the original constraints and the next NF

elements are the reduced objective functions. The original constrained optimization problem with

multiple objective functions is thus transformed into a single-objective, unconstrained minimization
problem. Now the problem is to minimize the K-S function, Fyg (®), defined as

M
Fgs (@) = fmaxt ﬁloge zep(tm((D)—fmaX)

m=1

where f, ., is the largest constraint corresponding to the new constraint vector i, (®) (in general not
equal to g, ). When the original constraints are satisfied during optimization, the constraints due to
the reduced objective functions are violated. Initially, in an infeasible design space, where the original
constraints are violated, the constraints due to the reduced objective functions are satisfied (i.e., gmax
is negative). The optimizer attempts to satisfy the violated constraints, thus optimizing the original
objective functions (F;).

The parameter p, which is analogous to the draw-down factor of penalty function formulation,
controls the distance from the surface of the K-S envelope to the surface of the maximum constraint

function. When p is large, the K-S function will closely follow the surface of the largest constraint



function and when p is small, the K-S function will include contributions from all constraints. The

new unconstrained minimization problem can be solved by using a variety of techniques. In the
present work, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [5] has been used. This
algorithm approximates the inverse of the Hessian of the composite objective function using a rank-
two update and guarantees both symmetry and positive definite characteristics of the updated inverse
Hessian matrix. The K-S formulation coupled with the BFGS algorithm has been successfully
applied to a variety of aerospace design applications [2-4].

The role played by p in the implementation of the K-S function formulation is illustrated in
Figs. 1-2 for an optimization problem with two objective functions to be minimized and one

constraint. The objective functions and the constraint are functions of a single design variable, ¢ (an

initial design point of ¢, = 0.5 is used). Initially, the constraint is satisfied and, therefore, gmax is
negative. The original constraint and the two additional constraints from the two reduced objective

functions are shown in Fig. 2 along with the K-S function envelopes for two different values of p.
For p=1, the K-S function includes equal contributions from all the three constraints. For the larger
value of p=3, the K-S function gets a stronger contribution from the largest constraint and weaker
contributions from the other two. Thus large values of p “draw down” the K-S function closer to the

largest constraint. The value of p may change from cycle to cycle in the optimization process. In a

typical application, it is progressively increased so that as the optimization proceeds the K-S function

more closely represents only the largest constraint.

Enhanced K-S Function Technique

As mentioned above, the main focus of the present work has been to enhance the K-S
approach in such a way as to enable the ability to emphasize specific objective functions during the
design optimization process. This gives the designer the option and ability to focus the design on
specific areas of concern (especially in component designs). Towards this end, the reduced objective

functions have been modified to allow relative weighting of specific design criteria. This is achieved
by incorporating a vector of weight factors B; (i = 1, 2, ... , NF) in the K-S envelope [6] as shown

below.
BE(®)

lo

f(@) = B — €ma i=1,..,NF

The total number of weight factors is equal to the number of objective functions. The relative

magnitudes of B, will help to emphasize specific objective functions in the overall optimization



process. The weight factors (B,) are positive numbers the numerical values of which are dictated by

the specific application. The original unweighted K-S formulation is recovered if §, = 1.

In the present work, two different methods of weighting have been investigated. The first one
(Type A) involves assigning positive integer values larger than unity as the weight factor for the
objective function to be emphasized, while assigning a weight factor of unity to all other objective
functions. In the second approach (Type B), unity is assigned to be the weight factor for the
emphasized objective function, while assigning a positive value smaller than unity to the remaining
objective functions. In the sections below, the following definitions are employed to identify the two
methods described above.

Type A : Weight factors for emphasized objective functions are positive integer value larger than
unity, while all other weight factors are assigned a value of unity.
Type B : Weight factor for emphasized objective function is unity, while all other weight factors
take on values less than unity.
Results and Discussion

In multidisciplinary optimization problems involving complex analyses (such as the HSCT
problem addressed here), competing design attributes are almost always present. This usually leads
to the requirement that multiple design objectives be included simultaneously in the optimization
process and a procedure capable of addressing multiple objective functions and constraints be used.
All the problems chosen in the present work to demonstrate the enhanced optimization procedure
involve objective functions that impose conflicting design requirements. Two different problems have
been chosen to demonstrate the enhanced K-S formulation. The first is a classical three bar truss
problem with two objective functions and six constraints and the second is the HSCT airframe design
problem for improved aerodynamic performance and sonic boom characteristics which involves three
objective functions, three constraints, and six design variables. The number of design variables and
constraints have been kept to a minimum here since the primary aim of the work is to demonstrate the
enhanced procedure as well the computational implementation of the procedure in a complex design
problem. _
Three-Bar Truss Problem

The first application of the enhanced K-S function is a classical three bar truss problem [1]. A
modified version of the three bar truss problem used to demonstrate the original K-S formulation [1]
has been chosen. A schematic of the problem is shown in Figure 3. The two outside bars of the truss
are made of steel, and the middle bar is made of titanium. Two loads are applied as shown. The
material properties and costs of the truss are also shown on the figure. The objective is to minimize
both the weight and the cost of the truss. The optimization problem is as follows.
Minimize



Weight of the 3-Bar truss, W

Cost of the 3-Bar truss, C
subject to

Sq 5,8, i=1-3
There are two objective functions, six constraints, and two design variables in the optimization
problem. The design variables are the cross sectional areas of the truss members, Al and A2, (Figure
3) which are required to be greater than 0.001 square inches. There are three constraints on the
tensile loads and three on the compressive loads. Since titanium is lighter than steel, the minimum
weight design is expected to have a larger titanium center member and smaller steel outer members.
The minimum cost design would have a smaller titanium center member and larger steel outer
members since steel is cheaper than titanium. These conflicting design criteria make this problem a
good candidate for demonstrating the enhanced K-S technique.

Preliminary optimization was carried out for the following three cases (Figs. 4-5):

a) Single objective, weight minimization (“weight only™)

b) Single objective, cost minimization (*“cost only”)

c) Multiobjective, unweighted optimization (“(1,1)”).
These are used as reference cases for comparison with the results of the enhanced optimization. The
expected trends of weight and cost variations are seen. Also, Fig. 5 indicates that the minimum cost
criteria is the critical one in this optimization problem. The results obtained by using the enhanced
multiobjective optimization process on the 3-Bar Truss Problem are presented in Figures 6-9. In the
figures, the weight factor set (5,1) means that the first objective function (weight) has received a
weight factor of 5 while the second (cost) has a weight of 1 leading to increased emphasis on the first
objective function during the optimization process. The unweighted K-S formulation is recovered
when a weight factor combination of (1,1) is applied.

Figures 6-7 show the results of weighting the first objective function (weight) using Type A
weight factors. Weight factors of 2, 5, 10, and 100 relative to the cost have been chosen to
emphasize the minimum weight criterion here. The results show that the enhanced K-S approach is
effective in emphasizing a specific objective in the multiobjective optimization problem.- For example,
when the weight of the truss is emphasized (Fig. 6), the decrease in weight with increasing emphasis
(weight factor varies from 1 to 10) is seen. While using Type A weight factors, it is apparent that the
magnitude of the weight factor may be bounded for the specific problem at hand. This is seen by
comparing the results of weight factor sets (10,1) and (100,1) which implies that in the multiobjective
optimization process, all the objectives impact the form of the optimum design even if one of them is
being emphasized more in comparison with the rest. The effect of the weighting on the design
variables is shown in Table 1. Figures 8-9 show the results of the Type B weight factors being used



to emphasize the weight. From the table and the figures, it is apparent that the Type B weight factors
did have the expected effect, however it took a fairly small weight factor to achieve it.

The numerical value of the weight factor(s) depends on the specific application being
addressed. User input and experience thus are important factors in the optimization process. The
change in the objective function with increasing weight factor is nonlinear. That is, a very large value
of the weight factor does not always lead to the lowest value of the objective function. The reason for
that may be that a very large weight factor may have the effect of forcing the design into the infeasible
domain leading to infeasible designs. For the present problem, it appears that the Type B weight
factors are preferable because they can achieve the desired effect (with correct user input) in a more

stable (less number of forays into the infeasible design space) manner than the Type A factors.

HSCT Sonic Boom Minimization Problem

The second problem addressed in this work is that of a High Speed Civil Transport (HSCT)
design for minimum sonic boom and improved aerodynamic performance [4]. Figure 10 illustrates a
typical sonic boom (pressure) signature produced by a supersonic aircraft (wing-body configuration)
at a distance from the aircraft. The two positive pressure peaks are the sonic boom levels that must be
minimized. The first peak (Ap,,, ) is caused by the bow shock associated the nose of the aircraft.
The second peak (Apg,,) is caused primarily by the leading edge of the wing. From an
aerodynamics perspective, a primary objective is to minimize the lift-to-drag ratio (C/C,). Thus, the
three objective functions to be minimized for the HSCT optimization problem are the two pressure
peaks and the C,/C, ratio. This must be accomplished while keeping the lift produced by the aircraft
at a desired level, which is done by imposing upper and lower limits on the C_ (C, & C__). A

constraint has also been placed on the wing trailing edge angle to ensure computational stability. The

mathematical formulation of the problem is as follows.
Minimize

Drag to Lift Ratio, C/C,

Over pressure Peaks, AP,y » AP,

subject to
C, sC =sC. Lift Constraint
A g rad Wing Trailing Edge Constraint
P <PLP, Side Constraints on Design Variables

In an effort to keep the computational effort low, preliminary computations for optimum forebody
geometry for minimum first pressure peak and minimum C./C, were carried out. The forebody
design (the nose length and the maximum radius of the forebody) is frozen at the level prescribed by



this optimum design for the subsequent computations involving the wing. Hence, the design
variables for the configuration used for the present work are all associated with the wing and its
location along the length of the aircraft (Figure 11).  As a result, only the second pressure peak

(APmax, ) and the C/C, ratios are the relevant objective functions to be addressed here.

The six design variables chosen for the present study are: the wing root chord (co), the two
leading edge sweep angles (L] & A2), the tip chord (ct), the break length (xp), and the wing starting

location (xw). Upper and lower bounds (side constraints) are imposed on these geometric variables

during the optimization process. While the first pressure peak remains an objective function, only the
second pressure peak and the C,/C, ratio have been weighted as part of the enhanced K-S formulation
to expedite the solution procedure. This was done with a view to keep the computational cost and
turnaround time low since the aerodynamic analysis is carried out by a three dimensional Navier-
Stokes solver. The inviscid flow field for the wing-body geometry has been evaluated using the flow
solver UPS3D [7] that utilizes the three dimensional Parabolized Navier Stokes (PNS) equations. An
extrapolation technique [8], has been used to obtain the sonic boom signatures from the flow field
pressure data in the present work.

For the weighting factors of the enhanced K-S formulation, the order of the objective functions
(Fi) is: Cp/C_ (i = 1) is first and then the first and second ‘pressure peaks (1 = 2, 3). Thus, a (5,1,1)

weight factor set indicates that C/C, is weighted by a factor of 5 relative to (Ap,,,), and (Ap,),. In

the results presented here, the subscript “ref” indicates the configuration before the optimization

process begins. As mentioned before, only the first and third objective functions (Cp/C, , APy, )

have been assigned weighting factors. The optimum results presented here correspond to those
obtained at the end of 30 optimization cycles.

The sensitivity analysis for the HSCT application was carried out using a finite difference
approach where the design variables are perturbed by a prescribed amount and the CFD solver is used
repeatedly on the “perturbed” configurations [6]. The results from the perturbed and unperturbed
configurations are then used for calculating the sensitivities. This approach has its inherent accuracy
problems in addition to the large computational time associated with the three dimensional CFD
solver. Also, the two-point exponential approximation technique [9] used to advance from cycle to
cycle may give rise to deviations from a true design point. Such deviations and errors may sometimes
be magnified if the problem being addressed (e.g. HSCT) is complex involving large analysis tools.
The results of the present section should be viewed with these considerations as a backdrop.

Figures 12-13 show the effect of the weight factors on the objective functions. The optimum
solutions (after 30 cycles) obtained for unweighted ((1,1,1)), C,/C, -emphasized ((10,1,1) and

(1,0.1,0.1)) and (Ap,,),-emphasized ((1,1,10) and (0.1,0.1,1)) are compared along with the



reference values of the objective functions of interest (C/C, and (Ap,,,),). Tables 2-3 also contain

the minimum values achieved for C/C, and (Ap,,,), for each weight factor set. Also shown in the

tables are the corresponding design variables for these cases and the corresponding number of
optimization cycles.

Figure 12 and Table 2 present the results for the case where minimum C,/C, is the primary
focus and the results show the effectiveness of weight factors in emphasizing specific design
objective(s) in a multiobjective design optimization problem. The weight factor sets that emphasized
C,/C, achieve a lower C,/C, than the unweighted case, and the weight factor sets that emphasize

(Ap,..), have a larger minimum C/C, than the unweighted case. Figure 13 and Table 3 show that all

the weight factor sets achieved lower values for (Ap,,,), than the unweighted case. The lowest

minimum was found with the Type A weight factor set that was designed to emphasize C/C,. It
must be noted that this set did in fact achieve the results desired for emphasizing C/C,. The main

reason for the occurrence of the lower value of (Ap,,), here could be that the optimization

formulation tends to favor the objective function with the lowest value ((Ap,,,), here) [6]. This can

also be seen from the data presented in Tables 2-3. Also, there is another important observation to be
made here. Even though the weighting of a single objective function in relation to the others might
seem to imply a “single objective” optimization problem, the truly multiobjective nature of the

complex problem is evident in these results. The pressure signatures associated with the minimum
(Ap,,,.), cases are shown in Figure 14. The variations in the second pressure peak can be seen.

One of the key issues to be addressed in the enhanced K-S function procedure is the proper
choice of weight factors. In the present work, two types (Type A and Type B) have been examined.
Type B weight factors consistently were more robust than Type A weight factors in arriving at the
optimum values for the specified objective functions in this problems as well as the previous (three-
bar truss) one. Based on the results obtained in this study, Type B weight factors are recommended
to be used with the developed procedure. However, a more detailed study of the appropriate form
(such as a normalized set of weight factors) of the weight factors and their effect on the optimization
process in general is necessary.

Conclusions

The primary goal of the present work has been to enhance the multiobjective K-S function
based optimization procedure by adding the capability of selectively emphasizing specific objective
functions. This has been achieved by incorporating weight factors for the objective functions. These
weight factors allow a designer to take advantage of the characteristics of the original K-S formulation
while retaining the ability to emphasize selected area(s) of the design. The effectiveness of the weight

10



factors has been demonstrated on two very different problems. The calculations show that the
enhanced multiobjective formulation is suitable for a wide spectrum of design (aerospace and other)
problems, especially in multidisciplinary designs where conflicting design requirements may exist.
The associated problem of the appropriate form of weight factors (relative magnitudes) to be used
with the optimization procedure also has been addressed. It is concluded that among the various

forms employed in the present work, the Type B weight factors, where the maximum value of B is

1.0, will lead to a robust optimization process. Also, the suitability of the procedure (enhanced K-S
function technique) in the modern design environment has been demonstrated on the complex
multidisciplinary, multiobjective design optimization problem associated with the HSCT design
problem. It must be reiterated here that the K-S function formulation has been chosen due to its
ability to address multiple design objectives simultaneously in the design optimization process and the
primary aim of the present work has been to enhance the technique and demonstrate it for practical

design applications.
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Table 1. Effect of Weight Factors on Design Variables

~Weight Factor Sets | Al (in) | A2 (in) ]
.0 0.555 0.001
@2,1) 0.505 0.001
(5.1) 0.477 0.001
(10,1) 0.455 0.001
(100,1) 0.442 0.318
(1,0.5) 0.555 0.001
(1,0.2) 0.555 0.001
(1,0.1) 0.555 0.001
(1,0.01) 0.453 0.347

Table 2. Minimum C/C, for weight factor sets.

ref (LLD _ (I0,,,L1) (L0.1,0.1) (1,1,10) (0.1,0.1,1)
X, (deg) 70.46 72.86 74.50 7284 7332 7251
A, (deg) 52.42 51.43 52.87 50.50 50.81 50.58
¢ (m) 7.81 8.29 8.67 8.30 7.96 7.86
c(m) 1.5776 1.3510 1.2666 1.2632 1.3165 1.2400
x,(m) 11.99 12.51 13.00 12.39 12.36 12.30
x,,(m) 7.80 7.56 7.71 7.27 7.62 7.66
C/C, 011196 0.11049  0.11028  0.11016  0.11075  0.11077
-13%)  (-15%)  (-1.6%)  (-1.1%)  (-1.1%)
(Ap,), 005206  0.04700  0.04336  0.04735  0.04680  0.04551
(-97%) (-172%) (-9.0%)  (-10.1) (-12.6)
cycle - 29 28 27 18 27-
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Table 3. Minimum (Ap,,,,), for weight factor sets.

ref (...L1) _(0,,,1) (L,0.1,0.1) (1.I,I0) (0.1,0.L,1)
A, (deg) 70.46 73.59 74.50 73.76 73.01 73.23
Ao(deg)  52.42 51.95 52.35 50.25 50.25 50.25
¢ (m) 7.81 8.21 8.59 8.22 7.80 7.94
c(m) 1.5776 1.3375 1.2794 1.2400 1.2400 1.2400
x,(m) 11.99 12.39 12.87 12.34 12.25 12.42
x,,(m) 7.80 7.64 7.63 7.31 7.69 7.74
C,/C,  0.11196 0.11086  0.11035  0.11032  0.11100  0.11092
-1.0%) (-1.4%)  (-1.5%)  (-09%)  (-0.9%)
(Ap,.), 005206 004442 004285  0.04428 004428  0.04391
-147%) (-177%) (-149%)  (-15.0) (-15.7)
cycle - 30 27 30 29 30
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Objective Objective
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0.5+
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-0. 54

¢,=0.5

I I
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Figure 1. Original objective functions and constraints.
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Fl - Reduced objective function 1
6 F2 - Reduced objective function 2
5] 8- constraint 1
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Design varable, ¢

Figure 2. K-S function envelope.
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Figure 3. Three Bar Truss Example Problem with Material Properties.
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Figure 7. Cost for Type A Weight Factors.
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Figure 8. Weight for Type B Weight Factors.

22



—
(=)

Costﬁ) — e
o o® SRS
l | l L1l

N

(1,1)

4 (1,0.5)

. (1,0.2)
& (1,0.1)

(1,0.01)

|||Illlllllllll|lllllll

(o T

7

Figure 9. Cost for Type B Weight Factors.
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Figure 10. Sonic boom pressure signature of a supersonic wing-body configuration.
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Figure 11. HSCT configuration and design variables.
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Figure 12. Comparative results of minimum C,/C, for each weight factor set.
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Figure 13. Comparative results of minimum (Ap,_,.), for each weight factor set.
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Figure 14. The second pressure peak for minimum (Ap,,), cases.
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